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ABSTRACT This study investigates the theoretical and numerical basis

of finite element-hosted couplings with the boundary element method
.( (BEM). The emphasis of the study is on (1) conceptually unifying the
] different coupling approaches and (2) providing an algorithm to facili-
y tate future implementation. Overviews of both the indirect and direct
boundary element formulations are included. The theoretical develop-
K ment of BEM stiffness matrices is limited to a physically intuitive
derivation based on the indirect BEM. Discontinuity between finite
element and boundary element regions is an inherent trait of the bound-
ary element method; this behavior is not eliminated by simply matching
the order of shape functions between the two methods. A discussion of
the numerical implementation of BEM-formulated stiffness matrices
addresses both the direct and indirect BEMs. The direct BEM is better
suited in coupled solution approaches due to its simpler traction-
displacement relationship. Algorithms are included which outline the

calculations unique to obtaining a stiffness matrix from the BEM.
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INTRODUCTION

Boundary element methods (BEM) have become an accepted alternative
to domain-based methods (finite elements and finite difference) for many
classes of boundary value problems (Refs 1 and 2). The direct (DBEM)
and indirect (IBEM) formulations are two well established formulations
that are used to solve a variety of boundary value problems in engineer-
ing. The key to these formulations is the existence of a fundamental
singular solution (i.e., the solution for a point source or point load
in an infinite domain -- a free-space Green's function).

This singular solution is jointly the blessing and curse of the
methods. Since it is a solution of the governing differential equations,
problems defined by a self-adjoint differential operator can be expressed
by integral equations. Numerically this means that for many classes of
problems BEMs require only the boundary to be discretized. The dimension-
ality of problems is reduced by one, and thus the methods lend themselves
to modeling infinite domains. The reduction in dimensionality reduces
the number of degrees of freedom in the approximation; however, the re-
sulting equations are nonsymmetric and fully populated in contrast to
the symmetric sparse systems characteristic of domain-based methods.

The singular nature of the fundamental solution allows the methods to
effectively approximate problems having singular or high-gradient stress
fields. This same singular nature complicates the numerical integrations
inherent to the methods. The fundamental singular solution is well known
for many classes of boundary value problems with homogeneous domains.
However, for an arbitrary-inhomogeneous domain the fundamental solution
is not known, and additional numerical effort is required (Ref 3).

Since the methods are relatively new, they have not been as extensively
developed as domain methods for nonlinear applications. They also lack
the generality (in terms of extensive continuum and structural element

libraries) that commercial finite element computer programs possess.
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The finite element method (FEM) has been the most highly developed

approximate solution technique for many classes boundary value problems
(Ref 39). The most general derivation follows from a weighted residual
approximation of the boundary value problem. The error introduced by an
approximate solution is orthogonalized with respect to a set of weighting
functions to obtain the "best" approximate solution. For the Galerkin
weighted residual statement the weighting functions correspond to the
basis functions in which the approximate solution is expanded. For prob-
lems with a self-adjoint operator, the weak form of the Galerkin statement
is equivalent to the variational statement of the problem.

Basis functions in the FEM usually are locally based polynomials
for which the integrations are relatively simple. The local nature of
these functions leads to a sparse system of equations, but this same
attribute hinders its ability to model infinite domains. To compensate
for this limitation, special elements (infinite elements) have been de-
veloped to model infinite domains which include a shape function based
on the form of analytical sclutions (Ref 4). This contrasts with the
BEM, where rather than using analytical solutions to determine the form
of shape functions, the analytical solutions are used directly as weighting
functions (Ref 5). The generality of the Galerkin and variational
statements allows nonlinearities and domain inhomogeneties to be
accommodated. For most structural applications the resulting system of
equations is also symmetrical.

Considering the individual strengths of boundary- and domain-based
methods, some classes of problems may be most effectively solved by com-
bining the methods. Nonlinear soil-structure interaction and fracture
mechanics are two applications where a combined solution approach can
potentially provide a more effective analysis. TFor nonlinear soil-
structure interaction, the FEM could be used to model the structure and
a region of the soil which is expected to exhibit nonlinear behavior;
the BEM could be used to approximate the infinite domain. For fracture
mechanics, the FEM might be used to model all of the problem except a
region local to the crack tip where the BEM could provide a crack tip

"element" capable of representing very high gradients.
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Objective

The ultimate objective of this research is to determine whether a
combination of boundary element and finite element solution methods
could more effectively solve nonlinear structural/geotechnical problems
than single method approaches. The immediate emphasis is on the formula-
tion of stiffness matrices for both the indirect and direct boundary

element methods (IBEM and DBEM, respectively).

Background

The idea of coupling the FEM and BEM is attributed to Wexler (Ref 6),
who used integral equation solutions to constrain FE solutions for infinite
domain field problems in the early 1970s. Other early examples of using
a combined solution approach dealt with wave phenomena, Chen and Mei
(Ref 7) and Shaw (Ref 8). Zienkiewicz et al. (Ref 9) proposed a combined
solution approach for statics problems followed by Osias' use of a coupled
solution to solve elastostatic problems (Ref 10).

There are numerous approaches to coupling the methods (Ref 11). 1In
this study the main classification is based upon "which method hosts the
coupling." For a BEM-hosted coupling the FEM subdomain is treated as a
BE region; equilibrium and compatibility are approximately enforced con-
tinuously along the interface, analogous to the BEM approach to modeling
piece-wise homogeneous problems. The resulting equations are nonsymmet-
ric, and thus this approach only lends itself to problems numerically
dominated by the BE subdomain (Refs 11, 12, 13, 14 and 15). For a FEM-
hosted coupling the BEM subdomain is treated as one or many finite ele-
ments. In this "super-element" approach the resulting BE equations re-
flect the "equivalent" stiffness of the subdomain and can be directly
assembled by a FE program. The term "super-element" reflects the high
degree of connectivity which will typically be present for a BE region.

A coupled solution approach does not seem to necessitate a displacement-

based FE formulation; however due to its commercial success, it appears

all the studies of coupled solutions have been based on this formulation.
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Within FEM-hosted couplings the next level of classification is the
procedure used to obtain the stiffness relationship. The two approaches
are: (1) a variational approach where a boundary variational equation is
the basis of the relationship, and (2) a direct aprroach where the BE
equations are manipulated into a stiffness form. A key step to both
approaches, using either BE formulation, is establishing a relationship
between the nodal tractions and the nodal displacements; an exception to
this is a variational approach with the IBEM which retains the artificial
tractions as unknowns in the system of equations (Refs 11 and 12).

Mei (Ref 16) was apparently the first to formulate a coupled solution

based on variational techniques (Ref 13). Other early efforts using a
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variational approach include: Jeng and Wexler (Ref 17); Shaw (Ref 18);

.

Zienkiewicz, Kelly, and Bettess (Ref 9); and Kelly, Mustoe, and Zienkiewicz

,®
[ ]

]

(Ref 11). Stationarity of the variational statement necessarily produces

',4‘_4.L

a symmetric system, and thus this approach is sometimes grouped with

l.(‘l
et

some direct approaches as ''symmetric couplings." Tn the variational
approach, a variational statement of the problem is written in a boundary
form with the absence of body sources or forces (Refs 11 and 19). For
elastostatics the variational statement corresponds to a boundary form

of the potential energy functional. There have been many modifications

of this functional for various purposes including (1) to relax essential
boundary conditions or interface compatibility and (2) to enforce equilib-
rium (Ref 19 and 20).

With a functional, relationships between boundary values obtained
from the integral equations are substituted into the functional, reduc-
ing the number of unknowns. For a displacement-based FE, formulation
the nodal tractions are usually expressed in terms of the nodal displace-
ments, which requires the inversion of a fully populated coefficient
matrix. The previously mentioned exception to this approach (using the
IBEM), writes the boundary tractions in terms of the artificial tractions.

In this case stationarity is taken with respect to both nodal displace-

e . W v
ACA @
.'.'.. I R )

ments and artificial boundary tractions instead of nodal displacements

alone. The lack of a matrix inversion is paid for by an increase in the

number of unknowns and a double integration process.
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gh‘ In contrast to the variational formulations, Brebbia (see e.g.,

( Ref 2, 5, or 21) directly manipulated the BE equations into a stiffness

é x form. The Maxwell-Betti reciprocal theorem proves that a stiffness

0 matrix should be symmetric for a linear elastic domain; however, the

" direct manipulation does not produce a symmetric system. Brebbia

;h) symmetrized the system by averaging the off-diagonal terms based on an
igsﬁ error minimization argument using the method of least squares. The

::ﬁ? resulting stiffness matrix was of the same form as obtained by

i:&? variational methods using the potential energy functional (Ref 11).

Despite the apparent agreement between the two approaches, agreement

‘2; between proponents of the approaches is scarce. Kelly et al. (Ref 11)

'5{ state that the modification to obtain symmetry 'apparently has no valid

X ’E foundation except that the energy approach led to a similar form." Brebbia
~. et al. (Ref 2) later admitted that there is no rationale to justify the
 £?t error minimization and that the matrix should in fact be nonsymmetric.

;if In addition, he questions the combination of variational principles and
3; integral equations used in the variational approach. His argument is not
( B implying that a nonsymmetric stiffness matrix is physically meaningful

ﬁsz for an elastic domain; rather he seems to be indicating that the numerical
::: approximations used by the BEM will inherently produce a nonsymmetric

e e
2
v

[

stiffness matrix. Initial efforts indicated that the symmetric matrix

provided better results; however, more recent comparisons (Ref 20) using

O

:;;: quadratic elements and providing for geometric discontinuities indicate
::i: the contrary. Fortunately for cases which have a relatively fine boundary
.;f discretization, Roudolphi (Ref 22) has found the degree of nonsymmetry

o

o to be insignificant. This is likely to be the case for geotechnical

ifﬁ: applications.

S

Another problem which is common to both approaches is failure of

s
l" ",l

- the stiffness matrix to satisfy equilibrium. Equilibrium requires the

; terms in each column corresponding to a given global direction to sum to

fi; zero. With the DBEM the system of equations can be augmented by two

t;: additional equations which cause the approximate traction distribution
‘;i; to identically satisfy equilibrium (Ref 11). By this approach the
“. equilibrium problem is addressed while establishing the nodal traction-

f: displacement relationship instead of after the stiffness matrix is

‘:ﬁ
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¢: formed. Hartman (Ref 23) gives a theoretical discussion on the symmetry
i and equilibrium problems and provides advice on how to correct them.
:\; Tullberg and Belteus (Ref 20) compare the accuracy and convergence

:ﬁ characteristics of seven stiffness formulations for two simple

" two-dimensional problems -- uniaxial tension and bending. The seven

[ stiffness matrices were obtained using the DBEM and included all the
:% variations mentioned above.

e In addition to the differences used here to classify formulations,
! $ there have been numerous other variations. Some researchers (Ref 19)

have used element condeénsation to reduce the unknowns for the BE super-

:;: element to those located on the interface between the two methods. This
‘E: could be useful in fracture mechanics applications where numerous boundary
:; elements might be used near the crack tip. As previously mentioned,

‘: modified functionals have been usel to relax compatibility requirements
i; (e.g., when interfacing subdomains with different shape functions).
fi: Variations in the BE formulations themselves introduce additional
Lk: classification parameters. Though not addressed in this study, for some
) applications traction discontinuity is an important consideration. Many
:: ways of treating this problem have been reported (Ref 20, 25, 26, and
i\. 27). A simple though less rigorous approach is to position the colloca-
f¢* tion points at the interior of the element. When all of the collocation
5 : points associated with an element are internally positioned, the elements
l;; are referred to as "discontinuous' or "nonconforming" elements (Ref 28).
1:2 Though the discontinuous elements add some flexibility to the method in
.:j terms of mesh refinement, it is at the expense of increasing the number
6' of equations by up to 100 percent. Discontinuous elements would appear
i; to complicate a coupling algorithm since the collocation points do not
»:3 correspond to node points.

‘- Relationship to Previous NCEL Work
e

:}: The primary role of this research of the BEM has been to compliment
'; FEM analysis capabilities (i.e., coupled solution techniques). The BEM
}!. is in general a more analytically rigorous techiique, and thus the fund-
;: amentals of the method have been investigated. As a result of these
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& efforts the potential of the method as a separate analysis tool has also
H been observed. Thus the efforts at coupling have emphasized a modular
f;ﬁ approach where it is assumed that both analysis methods can serve as an
o
}Q, individual or a coupled tool.
N
e In NCEL's first study (Ref 29) the IBEM formulation was
\ investigated in one- and two-dimensional elastostatics and numerical
~' . . .
o, results were compared with the DBEM and analytical solutions. A crude
N
*\: element (constant distribution) was used but the potential of the method
N
;:4 was evident. This study indicated the need for higher order elements

r—o

and 1integration techniques to improve results in the near boundary

1 a

:} region.

:E In NCEL's next study (Ref 15) a coupling of the BE and FE methods
3Ei was investigated. A 3EM-hosted coupling was formulated, approximating
i;. compatibility and equilibrium on the interlaces. Qualitatively the
;:E? coupling was a success, but the simple constant elements used for both
:::S methods prevented substantial quantitative evaluation. For nonlinear
Ei:: soil-structure applications where the FEM is used to model the nonlinear

region, the FEM should host the coupling. Two areas required further

hi: study: (1) accuracy of the BEM formulations, and (2) a FEM-hosted

:;: coupling approach.

:&: In the third study (Refs 30 and 31) higher order isoparametric bound-

ary elements were investigated along with their associated integration

%

techniques. Lachat and Watson (Ref 32) adapted the isoparametric element

®y
.

N
-'1 N . .
O formulation directly from FE technology. However, for the BEM the inte-
AN
;,:n grands in the coefficient calculations are singular and thus their integra-

> tion requires special attention. Though much effort had been devoted to
L ¥ .
l:}: dealing with the integration over the singularity an effective numerical

:f: approach to performing the integrations in the near boundary region was
}ﬁj lacking. A recursive algorithm which adaptively subdivides the element

® to maintain consistent accuracy independent of the response point location

i

RN was developed. The new element formulation has effectively eliminated

.\.!

Ty near boundary error resulting from coarse numerical integration and has

3:3 provided valuable insight to other errors inherent to the boundary

‘ elemert methods.
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:4 \ Scope

N In this study, diferent approaches to obtaining a FEM-hosted coupling
o

‘ﬁVf are investigated. The emphasis is on: (1) conceptually unifying the dif-
" 8 p P y ying
)

] : . .1 . P

AN ferent coupling techniques and (2) providing an algorithm to facilitate

\ future implementation. ‘This preliminary report on the study emphasizes
W

! ~

AN the development of an algcrithm for obtaining a stiffness matrix from

1 P9

o BEMs. A future report should provide a more detailed theoretical back-

gl

N gronnd and numerical results. A physically intuitive development of an

IBEM stiffness matrix is included, but the DBEM is also addressed. Over-

~;

X

views of both the NBEM and IBEM formulations are given in the following

x
X

by

Pl
L 2]

sections to establish nomenclature and to present the necessary equations

2

W
O
b

'y
®

for background.
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o

Nomenclature

A list of principal symbols used in the report is included as

Appendix A, Additional variables which have a limited scope of use are

l/Il -

< ; defined within the text. Modifications (such as the addition of a sub-
,f‘.‘
o script) are also defined in the text unless listed in Appendix A.
ot
~jni Tnstead of the matrix notation defined, indicial notation will sometimes
be nsed to clarify equations. Indices will always be lower case while
B SAS . . . . . .
20N identifying subscripts or superscripts will be upper case.
'n"\
\
o
~ N
F\-l.
THEORY
2N
A-~". . r I3
o This study focuses on the development of a stiffness matrix for a

Ry
Y
.
Vo

coupled solution approach. Fach method of analysis is applied to

® portions of the domain where 1t is best suited. For illustration the
B - F
B .- domain Q@ (Figure 1) is divided into two subdomains @ , the FE subdomain,
‘ -J .

BN B . , . . Sy ,
k.. and 7, the BE subdomain. The equations of equilibrium are given b
o 1 q g y
oo

@ ag,., .+, = 0 (la)
-y ij,]. i

-

A

‘. 1o} = 9 1b
0o i i (1h)
o
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and the compatibility equations are given by

1
= +
i3 7 2 (i L )

The BE subdomain is assumed to be a linear isotopic homogeneous elastic
material. Thus the governing constitutive relations, generalized Hook's

law, are given as

= +
oij 2 U sij Iy €Lk 61j (3)

where X\ and p are Lame's constants expressed in terms of Young's modulus

(E) and Poisson's ratio (v) as

_ Ewv _ __E
A & vy v o e s S L (4

Alternatively the equilibrium (1), compatibility (2), and constitutive
(3) relations can be combined to give a single set of equations in terms

of displacement written as

u, ..+ x+uwu, .. +¢, =0 (5)
" 1,31 v J,J1 ¢1

the Navier equations. The boundary conditions are given by

1}

;i(g) on T (6a)

ui(§) U

L = t.x)  onl (6b)

i -

where ui(g) and Li(g) are prescribed distributions of houndary
displacements and tractions, respectively. The simple notation does rot
jimply, that the boundary conditions are mutually exclusive; the fully

mixad boundary value problem is addressed.
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The key solution to Equation (5) for the more popular BEMs is the
fundanental singular solution. This is the solution due to a concen-
trated load in an infinite space which has the same dimension as the
pioblem to be solved. For plane strain conditions the Kelvin solution
expresses the displacement field ui(l) due to a unit force ek(g) in an
infinite plane. The indices i, j, and k assume values of 1 or 2, and

repeated indices imply summation. The Kelvin solution is given by

u (%) = G, (x,8) e (§) (7a)
where
¥ Yk
le(§,§) = Cl(C2 aik Inr - rz ) + Aik (7b)
= .1
€1 = 8ru(l - v)
C2 = 3 -4v
Aik = arbitrary constant tensor based on zero displacement

reference distance

By incorporating Equations (2) and (3), the stress field cjj(g) is given

as
ofj(§) = Tijk(§,§) e, (8) (8a)
where
c. | 2y.y.y
- 3 . itk
T{jk({c.é) 5 Ch(dikyj + éjkyi éijyk) + > (8b)
r r
= . 1
Cz B 4n(l - v)
C, = 1-2v
10
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Equilibrium conditions applied at a boundary point, with a unit
outward normal ni(x), and Equation (8a) combine to give the surface

tractions ti(g) as

ti(g) = Fik(§,§) ek(§) (9a)
where
€q 2y ¥
Flk(§,§) = ;5 Ca(nkyi - niyk) + ( c 46 ik+ 2 ) yjnj (9b)

Figures 2 and 3 illustrate the singular behavior of the fundamental
solution G11 and T111 respectively, for a point load applied at the
origin of the Cartesian system. The singularity of G is order 1ln(r),
while the singularity of T, obtained from derivatives of G, is order
1/r. The plane strain solution can be converted to the plane stress
solution by specifying an effective Poisson ratio v = v/(1+v).

The fundamental solution is a key ingredient in formulating
integral equations for the indirect and direct BEMs. Integral equations
are an equivalent statement of a boundary value problem. Finite
difference solutions approximate the differential equations; finite
element solutions approximate the stationarity of the variational
statement (in some instances); and BEMs approximate the integral
equations.

The following subsections provide an overview of both the direct
and indirect BEMs and their associated integral equations. These over-
views are followed by a derivation of an IBEM stiffness matrix. The
last subsection discusses the discontinuous nature of coupled solution

techniques--an inherent trait of integral equation methods.
Overview of Direct Boundary Element Method
The direct boundary element method is the most highly developed of

all the integral equation methods. It was first applied to elastostatics
by Rizzo (Ref 33). Cruse and Rizzo (Ref 34) followed with a solution of

11
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ﬁ; the general transient elasto-dynamic problem. Since these early applica-
( tions, it has matured numericaiiy and the scope of application has

_Eﬁ} significantly broadened.

A The integral equations on which the DBEM is based are known as the
EE& Somigliana identities. The first identity has been obtained by two dif-
.T) ferent derivations. In both cases the fundamental solution plays a key
;x* role. The first derivation uses Betti's reciprocal work theorem in which
; *E one system is the actual boundary value problem and the second system
‘fh corresponds to the fundamental solution (Ref 33). Betti (1872-73) and
(; Somigliana (1885-86) were the first to apply potential methods to elas-
:g?. ticity (Ref 19). Thus it is not surprising that Betti's theorem and

;ﬁz Somigliana's first identity are the Navier equation counterparts to

i; Green's second and third formula from potential theory.

;J Somigliana's first identity is given by

—’_:.z

::'_:f

E\ uj(g) = {[Gij(g,g) t.(x) - Fijo_{,g) u,(x)] dx

o
[

L .
o + fG..(z,g) ¥.(2) dz (10a)
" 1)~ i =" -
-_:.n Q
) (x €T and z ¢ Q)
-": - -
"
s in which the displacement field is written in terms of the boundary tractionms,
T
:{* boundary displacements, and body forces. The second identity is obtained
;“ by combining Equation (10a) with the compatibility (Equation (2)) and
O
o the constitutive (Equation (3)) relations giving the stress tensor as
g
o
o) = [ D) £ - B (0D w0 ax
® T
= -
o + i (208 ¥ (2) dz (10b)
. Q
®
..::,-
-
1 &-"
10
o

el

12




in which the stress field is now expressed in terms of boundary tractions,

D)

{ boundary displacements, and body forces. Since the compatibility relation
-k{‘ (Equation (2)) involves derivatives of displacement, the kernel

:ii‘ functions H and E have singularities of orders 1/r and 1/r2,

7%:: respectively.

|- The DBEM is formulated by the numerical approximation of Equations
.;EE (10). Equation (10a) is used to obtain the unknown boundary values, and
:‘VC then both equations allow the calculation of internal responses. The

“'*u two approximations made to obtain the unknown boundary values are: (1)

integrating in a piecewise manner, and (2) solving the equation in a

7}"'

ﬁ: boundary collocation sense. That is, the integration is subdivided over
5&; boundary elements and domain cells; and the integral equations are applied
:iii to a discrete number of points on the boundary.

;; The early applications of the method used analytical integrations
#:g: over elements which could model constant or linear distributions of

5:&; boundary and domain values. More recent applications apply isoparametric
:E: element concepts common to the finite element method (Ref 32). However,
{ unlike the FEM all quantities are interpolated at the same order (i.e.,
g:ﬁ linear boundary elements interpolate geometry, displacements, and

 ?§ tractions linearly). The boundary distribution of any field variable ¥
3;2 on a single element is written as

;

o

S

N

&

NEN

o= ) N T (11)

a=1

el
ey ey,
. «
Iil'nl

LN

1RO where a is the node index; NEN
SN

¥y normalized local curvalinear coordinate; Kia are nodal values of the
oy

is the number of element nodes; n is the
field variable; and Na(n) are the appropriate polynomial shape functions

) for the element. A typical quadratic element (NEN = 3) is shown in

- Figure 4. The shape functions for this element are given by

s Ny = 5 (" -m) (12a)

]
~
Tt

:": N, (n) -0 (12b)
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B i\, 1 2
B N.(n) = 35 (a” + ) (12¢)
{ 3 2
’-'..-I"
,; : The kernal functions in the integral equations are singular and require
{ﬁ§j special treatment when considering the response at points on (Ref 1) or
NG i i
., near (Ref 30) the boundary. The corresponding numerical details are
.".y omitted here for brevity. While the use of the fundamental solution
TSyt . R
;xﬁy ensures the satisfaction of the governing differential equations, the
AT
Eb:: boundary collocation ensures violation of the boundary conditions. This
)
o point is discussed in a later section with respect to a coupled solution
!i};, approach.
INENAS
(J}. The piecewise integration and boundary collocation allow Equation
N
,$h (10a) to be approximated by a system of linear equations in terms of the
.‘.'. *
WS nodal boundary values and body forces as
®
o,
o .
2 Gt-Eu+g ¢ = 0 (13)
A
N
. (for detail see Reference 1 or 2). The body forces are specified and
(. f thus the product with G' gives a known vector. For a mixed boundary
-\~ ~
o value problem the vectors of nodal tractions and displacements contain
A
f:i known and unknown values. To solve for the unknown nodal values we
.:..':" partition the system as

o

fxd - -

L t u -

'.\ ’ [ - - '
Y G, G |{-F-|E, El1{-t+c ¢ = o0 (14)
(- %1 22 ~1 ~2 LI 4 -
Gy t u

®

.:Ej and then collect the unknown nodal values to give

e

e

Tt N -

P t t ~

v, G - = -G ~t - G' 15
T Ll 51] - { 22 ~2] g ¢ (15)
1N u u
e, - "4
oo

": The unknown nodal values are obtained by solving the above system. Then
" Somigliana's identities can be used to obtain the desired internal
::-:::- responses.
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i; Overview of Indirect Boundary Element Method
%s The indirect boundary element method is probably the second most

? , common integral equation method. Like the direct method it also has its

origins in classical potential theory (Ref 35). Single- and double-

T layer potentials were used in the theory of classical electrodynamics to
rﬁ express boundary value problems as integral equations. The most advanced
i“\ implementation of the method appears to remain in its application to
% N electromagnetic field problems (Refs 6, 17, and 36). The indirect

B method appears to have first been applied to elastostatics by Massonnet
- (Ref 37). The numerical development of IBEM, for elasticity problems,

EE paralleled that of the DBEM until the mid 1970s. 1In recent years it has
:} not been developed as extensively as the direct method; however, its

}; physically meaningful formulation provides insight to both methods
e (Ref 31).

':; The integral equations on which the IBEM is based are a single-

:i layer potential statement of the boundary value problem. The domain
(' 1 is embedded in an infinite plane as shown in Figure 5. For elasticity
;’, applications the single-layer source corresponds to a vector of
;?? artificial tractions, Pk(g) (£ ¢ T). 1In this formulation we seek the

32 boundary distribution of artificial tractions which satisfy the
; j prescribed boundary conditions. These tractions are artificial in the
fﬁ sense that they only exist because the domain Q has been embedded in an
’: infinite plane. They represent an intermediate step in the formulation
:E and do not correspond to the actual boundary tractions. Artificial trac-
; tions and body forces can be expressed as a '"continuous" distribution of
Ei ek(g). Thus the displacement, stress and traction fields are given by

~ integrating Equations (7a), (8a), and (9a) respectively as

<

o w0 = [ 6,0 P ag+ [ 6y 0 v (@ dz (16)
;: T Q

. 9, (0 = [Tijk@.g) P (8) dE + f T;k(%:2) ¥, (2) dz (17)
< r 2

o

N 15

o
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0 = [ Fueeh R a4 [ Funs b (@ (18)
1\ Q

Since the solution is expressed as a superposition of the fundamental
solution, the governing differential equations are satisfied over the
entire plane including the domain .

To determine the distribution of the artificial tractions we bring
the field point x to the boundary T and enforce the boundary conditions,

Equation (6). The resulting integral expressions are given as

1]

e T (19)

[k

[ 6uen B® a5+ 600 v 4
T Q

;1(5)

t,(x) = f Fo(x:8) ﬁk(é) d§ + f F(%:2) ¥, (2) dz x e I (20)
r Q

Equation (19) is regular upon integration while Equation (20) must be

interpreted in a Cauchy principal value sense and is thus written as

: L .
N LN B NS I NG
r
F[ P w(m a2 xe Ty (21)
Q

A tangent line is assumed through x and the sign on the first term
depends on the orientation of the element with respect to Q.

The IBEM is formulated by the numerical approximation of Equations
(16) through (21). FEquations (19) and (21) are used to determine the
nnknown artificial tractions, and then Equations (16) through (18) allow
the calculation of internal responses. As with the DBEM, the two
approximations made to obtain the unknowns are: (1) integrating in a
pircewise manner and (2) solving the integral equations in a weighted
residnal sense (on the boundary). The integration is subdivided over

boundary elements and domain ceils. Normally the integral equations are

16
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e
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o
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] N satisfied in a collocation sense; however, Lean et.al (Ref 36) report
19,
{ improved accuracy by a Galerkin approximation. This study is limited to
,;ﬁ a collocation approximation of the equations. Equations (19) and (21)
S
1 :. are then approximated as
2 ~'
s
s u =GR+ y (22a)
Sy - -
1“% _ = '
o t = FP+F' ¢ (22b)
B, ) )
(, where u and t are values of boundary displacements and tractions at col-
‘:_ location points. For continuous elements the collocation points correspond
N
ok to element node points. The coefficient matrices G, G', F and F' are
::: obtained by integrations of Equations (19) and (21) with respect to the
® appropriate shape functions. E is the vector of unknown nodal artificial
':Qj traction values, and the last term provides the effect of the body forces
o0

at each collocation point. For details see References 1, 2, 31, and 38.
- For a mixed boundary value problem Equations (22a) and (22b) are

applied to FU and FT’ respectively, giving

& g qsl. 9]
i b= R By (23)
«
N
: i: The nodal artificial tractions are obtained by solving the above system.
o
AS
'i\ Then Equations (16) through (18) can be used to obtain the desired internal
3
"r responses. As when developing the system of equations, boundary values
\:: are obtained by letting x go to the boundary (as Equations (19) and (21)).
i: Consider a few of the differences between the two BE formulations.
xf: Let NCP be the number of boundary collocation points. Ignoring the
o ’
';‘ integrations associated with body forces, the DBEM (Equation 15) and
A IBEM (Fquation 23) require the calculation of Z(ZNCP)Z and (2NCP)2
W "
::3 coefficients, respectively. However, in solving the system of
v,
*%} equations, the DBEM yields the unknown boundary values directly while
o
':ﬁ the IBEM yields the artificial traction distribution. To calculate all
b the unknown boundary values the TBEM requires additional (ZNFP)z
o "
-
-
- 17
o
~7
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f:;: coefficient calculations. Though the total number of coefficients, and

( ~ thus integrations, required to obtain the unknown boundary values are

& i equal, the computational effort is not. The coefficient matrices of the
i DBEM are calculated "simultaneously" and thus the "overhead calculations"

*t; (e.g., calculation of the jacobian) associated with the numerical integra-

.53; tions are done once. Since these "overhead calculations" are performed

rﬁb twice by the IBEM, it requires more effort. However, this comparison

; E; has assumed the analyst needs all the boundary values. They are required

af: by the DBEM to calculate internal responses by the Somigliana identities;

¢ . they are not needed by the IBEM for internal response calculation and

S thus the analyst can be selective.

'jzi The calculation of internal responses also differs between the

ﬁ;:; methods. The DBEM obtains internal responses by the Somigliana identi-

':i; ties, Equation (10), which integrate the effects of both the boundary

] 25 tractions and displacements. The IBEM only integrates the effects of

‘:;g artificial tractions, Equations (16) through (18). As in developing the

‘E: system of equations, though the effort is not doubled for the DBEM, it

is considerably more. Another important difference in the internal

response calculations is the order of singularity of the kernal
functions. For two dimensional problems the methods have the following

orders of singularity:

v‘,'v(
“ *

; Displacement Strain, Stress, Traction

e DBEM  o(ln r) and o(1/r) o(1/r) and o(1/r?)

{:ﬁ IBEM o(ln r) o(l/r)

e

':n: Thus the DBEM must deal with stronger singularities and correspondingly
_Eé more diff{icult integrations. This problem is most severe in the near
‘$E: boundary region (Refs 30 and 31). In fairness, the indirect method is
;“' not without its problems in calculating internal responses. Though the
;:i- integration effort is reduced in the IBEM, often the accuracy is too. A
Eti problem that is inherent to the IBEM is associated with loading and

i?: geometric discontinuities. 1In these areas, the artificial tractions

1;: experience very high gradients even though boundary conditions may be
i:: very well behaved. Thus unless these areas receive special treatment in
:g: the numerical formulation or modeling, accuracy is locally very poor.
A
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For coupled solution approaches, particularly for infinite domain
problems, it is not easy to determine which BEM would be the most
effective. Both methods must calculate two coefficient matrices which
involve the same orders of singularity. In addition, discontinuities
can often be avoided, eliminating them as a factor. 1In the following
section the IBEM is used to illustrate a direct derivation of a
stiffness matrix. The ideas can be applied to the DBEM but are

explained with the IBEM due to its conceptual simplicity.

A Direct Derivation of an IBEM Stiffness Matrix

‘1:

"

s

::: This section presents a physically intuitive derivation of an IBEM
S

- stiffness matrix. The relation between nodal displacements and tractions
ey P

is identical to the relation obtained directly by Kelly et al. (Ref 11).
The physical approach provides additional insight to the stiffness
formulation.

A stiffness matrix relates nodal displacements to generalized nodal

forces in the form

[F=N]
Ll
in >

K (24)

~

where K, é and f are the stiffness matrix, displacement vector, and
generalized force vector, respectively. This basic definition and a
numerical solution provided by the IBEM allow a stiffness matrix to be
calculated for a BEM region. Consider the displacement boundary value

problem shown in Figure 6. The boundary, T, is subdivided into np

. boundary elements. The elements are shown as isoparametric quadratic

‘ elements for illustration. All displacements are zero except the jth
d o f which has a unit displacement. We can now use the IBEM to solve

;,ﬂ‘ the displacement boundary value problem. As given by Equation (22a)

Sal with body forces omitted, the unknown nodal artificial boundary trac-

tiif tions are related to the known nodal displacements by

o

b u = G (25)

o

o 19
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This system of equations can be solved for the nodal artificial traction

¥/

values which can then be used to obtain the unknown real boundary trac-

‘\: tions by an approximation of Equation (18). The nodal tractions can be
’}: expressed in matrix form as

Ca

i E-oEe (26)
L
Lo
M, " The distribution of the traction along the boundary is then approximated
L~
Yo in terms of the locally based shape functions* as

b = M)t (27
2

2ot
-;«.f which by incorporating Equation (26) becomes

22

_. ~
v t(x) = M(x) EP (28)
".‘,:" With the distribution of boundary tractions, generalized nodal forces
O

y o (on the boundary) can now be obtained. The nodal forces are determined
vy by "measuring” the work done by the tractions due to a series of virtual
»

-;-;: displacements - displacement shape functions®*. The generalized forces
-
'\';: are given by

vy

)

) -

o Poe oo w ax (29)
N r
D ":‘
}G: For the prescribed displacements u, the generalized forces (Equation

!, (29)) are the jth column of a stiffness matrix for the domain Q. To

Ly

completely calculate the stiffness matrix we must individually subject

.
«

each remaining nodal degree of freedom to a unit perturbation, solve the

a

g
v

corresponding displacement boundary value problem, and then determine

‘?_ the generalized forces by Equation (29) to obtain the corresponding

| -,

he column of K.

N : :
e We now seek to express the above procedure in equation form. Usin

o p P 1 g
- ) . ) th

ﬁf indicial notation, the nodal displacement vector for the J

‘!_ perturbation is given by

> o L

- *In this context the shape functions are locally based but defined

ﬁx globally. That is, they are nonzero on one or two elements but defined
L on all T.
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-J 1, i=J
1T oo ik (30)
where i ranges from 1 to the number of degrees of freedem (n). Each éj

is the Jth coordinate vector in the n dimensional space. Combining all
of the vectors into a single matrix (i.e., the superscript J becomes an
index j) allows Equation (25) to be rewritten as

u,. = G P (31

Ui ik M 2
By Equation (30), a{] is simply the identity matrix. Thus we can easily

solve for the artificial tractions as

i = Gij (32)
This formulation provides insight to the character of g_l; each column
of g-l is the vector of artificial tractions resulting from a unit
perturbation of the corresponding d o f. G is of full column rank and
thus invertable if the collocation point positions are unique.

[nserting this result into Equations (28) and (29) yields the stiffness

matrix as

_ -1
Kij = f Nei (00 M (0 dx By G (33)
r
or in matrix notation
LT S|
K = N O N dx B G (34)

Kelly et al. (Ref 11) obtained the same form of solution for the potential
problem by eliminating the source density. For the elastostatics problem
this is equivalent to eliminating P from Equations (25) and (26). With

their approach we see that the product of F and g-] provides the relation

between nodal tractions and displacements. We can write Equation (34)

in an abhreviated form as




("
B, -:..':r
oty
Aw?
@
e
.,ﬁ:.f
Ty
S
S0
-
e K = CE (35)
H
Jﬂb where
I\i
) ‘('\‘ T
N c = [g (x) M(x) dx (36)
o -7
% r
vy
O and
"
AGRN
) -1
" E = FG (37)
\.'_‘.
S
( Brebbia's direct approach (Ref 21) to obtaining a stiffness matrix for
s the DBEM also has the same form. For the DBEM however, E is given by
L
SRS -1
SRS ~ ~ o~
i
!ig where F is not the same as obtained for the IBEM. The DBEM uses the
A
n same fundamental solution; however the roles of the source and field
:}: points and the roles of the indices are reversed in obtaining the
e Somigliana identities.
 n o As previously mentioned, direct formulations of stiffness matrices
AR
i”f do not initially yield a symmetric matrix. In addition both the direct
;{? and variational formulations produce stiffness matrices which violate
o equilibrium. Hartman (Ref 23) attributed these problems to the approxi-
) mat ions made in obtaining the traction-displacement relationship, Equa-
o
J:: tions (37) and (38), for the IBEM and DBEM, respectively. TFor the DBEM
-’“‘
,{j the equilibrium problem can be addressed when formulating E, iquation
.jﬂj (13) is augmented with two additional equations and corresponding Lagrange
’ multipliers, which force the traction distribution to "identically"
satisfy equilibrium (Ret 11). Most approaches to these problems modify
o the stiffness matrix rather than address the source of the problem, the
:;1 traction-displacement relationship (Ref 20).
o
i
S Discontinuity of Boundary Element Methods
‘;:f

Regardless of the formulation there is a characteristic of BE

formulated stiffness matrices and BE solutions in general which seems to
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ik:\ be ignored in the literature; BE formulations are inherently
incompatible at the interface of homogeneous regions.
\ﬁ: Derivations of BE formulations usually indicate that the governing
f :S differential equations are satisfied exactly in the domain while the
; f boundary conditions are only approximately satisfied. Often this is
S interpreted as meaning the boundary element shape functions constrain
‘:2 the displacement field. Actually the meaning has greater depth. This
i::? interpretation is often a consequence of invalid analogies between BEMs
j;& and FEMs. The methods are theoretically related and certainly the BEM
' has borrowed much technology from the FEM; however, the accepted use of
:bﬁ the name '"boundary element methods" for boundary integral equation tech-
niques is misleading. This interpretation is usually not enlightened by
afz numerical experience since many BE programs can not accurately calculate
® responses in the near boundary region.
‘iii The shape functions used for the so called "boundary elements" do
:E? not constrain the displacement field but merely offer an approximation
::ﬁg of the boundary values for integration. If they did constrain the
- displacement field, a single BE region comprised of four linear elements
:}i could pass the FE "patch test" (Ref 39); such is not the case. Typically
¢£: the integral equations are satisfied in a collocation sense (i.e., at
E?? discrete points along the boundary) and thus the boundary conditions are
-) satisfied at the collocation points (which coincide with nodal points
i“: for continuous element formulations). In between these points, satis-
;-i? faction of boundary conditions can be greatly in error. This is graph-
.;S ically illustrated in our previous report (Ref 31).
“‘ Similar to the displacement-based FEM's satisfaction of equilibrium
:S;E equations in a nodal sense, the BEM only satisfies boundary conditions
':&: in a nodal sense. Many researchers indicate that compatibility between
5?; the two methods is easily satisfied by using the same shape functions
’;- (Refs 1, 13, 21, 22, and 24); 1 disagree. However, discontinuity does
;t&: not imply poor results. On the contrary many incompatible finite
‘E"C‘E elements exhibit improved performance, and many accurate BE solutions
?:E: have been reported. Recognition of this basic incompatible behavior
';' could be of practical use. 1t affects the convergence properties of the
:&E method and can potentially explain other solution characteristics. One
A
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very useful application could be in mesh refinement. Whether the
refinement is a manual or an adaptive process, the variation in computed
responses between collocation points can provide a measure on which to

base the refinement.

DISCUSSION OF NUMERICAL IMPLEMENTATION

This section discusses the numerical implementation of the IBEM
stiffness matrix developed above. Algorithms, in the form of pseudo-
code outlines, provide detail on key aspects of the implementation.
These algorithms have been implemented in a research code. The
numerical studies are incomplete but will be presented in a follow-up
report. The scope of this discussion is limited to the calculation of
the stiffness matrix; assembly of element stiffness matrices is well
documented (Ref 39). Both the IBEM and DBEM are addressed below since
their stiffness matrices Equation (35) can have the same form. Rudolphi
(Ref 22) provides a general outline for the calculation of a "stiffness"
matrix including the BE coefficient matrix calculations. His paper
deals principally with the potential problem using the DBEM. Though
Rudolphi's work was not referenced for the implementation aspects of
this work, the main steps in the calculations are independent of the
application and BE formulation.

Dine to the complexity of BE and FE software systems emphasis must
be placed on the modular design of the coupled software system. In the
following discussion 1 assume BE and FE systems exist and require modi-
fication. The stiffness matrix calculation can be organized as three

tasks:

(1) Caleunlation of the coefficient matrices (G and F) and C

(2) Preliminary K calculation, inverse and matrix product

calculations as shown in Equation (34)

(3) Optional adjustments in K to satisfy equilibrinm and

symmetry




-
-

03
g
5

® 555

ey

w e w

The first task requires modification of the BE system. The second

s

and third tasks can be added to the BE system, comprise a separate

¥

-

,if module, or be incorporated into an element routine of the FE system. In
”ii my approach T prefer to "weakly couple" the software systems so that
'E: they can still serve as individual research and analysis tools. By this
i approach the first task is completely performed by the modified BE
:S system. The second and third tasks are performed by a separate program
i‘E: module which except for the three component matrices of K (i.e.,
:¢; C, F, g,) requires no access to the BE data. An element routine is then
added to the FE program which reads data defining the "supe:-element”
"i connectivity and assembles the BE K into the global system at the time
'i of assembly. Solution of the FE system provides nodal displacements
"; from which stresses can be calculated in both the FE and BE domains.
o When boundary tracticns or internal responses are required in the
:?j BE region, the displacements associated with BE nodes must be retained.
}iﬁ For ei{ther Tk formulation, boundary tractions can be obtained by the
Et: equation: i = E 4. For the DBEM the known boundary values in combination
. with Somigliana's identities (Equation (10)) provide internal responses.
EZ For the IBEM the tractions or displacements could be used to solve a
&? boundary value problem for the artificial tractions. Algernatively g-
:i conld be saved during the K calculations giving E = Q—l u. The effect
) of the artificial tractions is then integrated to obtain internal responses
.:: according to Fquations (16) through (18). The remainder of this
‘ ﬁ discussion concentrates on the calculation of the stiffness matrix.
,’; For smaller problems the calculation of the matrices comprising K
: deminates the numerical effort. The coefficient matrices are inherently
fﬁ: full and their formulatiou recnires extensive numerical integration.
';; The cast of their calenlation would appear to increase with the sqnare
:i{ o/ the number of boundary elements. There is an element "overhead cost"
; which follows this trend; however for a program which uses a variable
:i order integration scheme the cost of the average element integration
iE: decreases. This {s dne to the reduction in the order of integration
;x& with a decrease in the ratio of element length to collocation point
; distance (Ref 31 and 32).
:Jj
-
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Y Calculation of E requires an IBEM program to generate both F and G
for a single homogeneous domain. These are the same equations required

to combine homogeneous BE regions by approximate satisfaction of equi-

o oy

ERES

librium and continuity along their interface. Thus many existing BE

ty
F

programs already have this capability. The calculation of two coeffi-

» -

5

cient matrices does not double the numerical effort because much of the

i:g: overhead in Lhe numerical integrations is common to both types of co-
'\f: efficients.
\:i; In the DBEM both F and G are always calculated. The only modifica-
é tion which might be required, depending on the program design, is the
] pﬁ retention of all coefficients. Some implementations immediately multiply 1
NEE known boundary values by corresponding coefficients and sum the terms
ﬁ: into the known vector to form the system of equations (see Equation 15).
® Calculating the integration of the shape function product matrix,
_ﬁgi C, according to Equation (36), is effectively performed at the element
j?f level. Because of the locally based nature of the shape functions, C is
2&: very sparse. For quadratic elements, rows associated with a mid-node
( have three nonzero terms, and those associated with an extreme node have
:ni five nonzero terms. In this implementation tractions and displacements
-Sﬁ: are interpolated at the same order (quadratic), and there are no
EEZ provisions for traction discontinuities. As a result M(x) = N(x) and
Y therefore C is symmetric. Not providing for traction discontinuities
' does place geometrical constraints on the BE region. However for BE
Efi regions comprised of several elements and few corners, Rudolphi (Ref 22)
ﬁf concludes that traction continuity has a negligible effect on the accuracy.
;: For applications where the BEM region is wused as an "infinite element
éi. the analyst determines the shape of the FEM/BEM interface and thus geo-
‘:ii metric discontinuities pose no problem.
i%& For a vector boundary value problem such as the elasticity problenm,
.' the two rows of C corresponding to a common node have identical terms
:35: but differ in their position, column. Except for the diagonal terms in
‘;:; C each term calculated at the element level is complete (i.e., no sum-
Eﬁﬁ mation is required) and could be formally assembled into four positions
;, of C. Only the diagonal terms of C which correspond to shape functions
v
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spanning two elements require the addition of a second term. Thus it is
very efficient to both calculate C and perform its multiplication with E
at an element level. There is a maximum of six unique terms for a single
element. Execution and storage requirements associated with C are trivial
compared to F and G which are full coefficient matrices.

The algorithm below outlines the calculation of C at the element
level. The research code is written in the Modula-2 language (Ref 40),
which is a descendent of Pascal and Modula. Those familiar with Pascal
will recognize the dialect below. I have attempted to remove enough

syntactical idiosyncrasies from the code to permit communication. Calls

v _a
rl
L

4

T

to Modula-2 procedures {analogous to FORTRAN subroutines) are supplemented

NN
[ s

with short descriptions of their purpose. Comments which do not replace

actual code are enclosed in (* *)'s. General file operations and variable

8«

'Y

definitions are omitted. Descriptive variable names supplemented by
comments are used to define variables. Many modern languages provide

for user defined data types. Nnode and Mnode are variables which can
have the enumerated values of (a,c,b), the node indices listed by extreme
nodes first. This corresponds to a of Figure 4 taking the values of
(1,3,2) respectively. These variables, Nnode and Mnode, serve as nodal
indices to arrays and promote internal documentation. More complicated
data types such as records have been converted to arrays to simplify the

outline.
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gty
K PROCEDURE GenerateShapeProductMatrix

f' s (ContNode, (* array of continuous element node numbers
: indexed as (element_number,node_index) *)
e numeltotal, (* total number of continuous elements *)

1;;: ShapeIntOrder) (* numerical integration order *)

S
N?{ BEGIN (* the GenerateShapeProductMatrix procedure *)

D - FOR elnum = 1 TO numeltotal DO (* for each element *)

F_) (** determine shape function (N) & weight-Jacobian product
N> values at each integration point *)

:$&§ FOR Nnode = a TO b DO (* an index on the node *)

'¢“: Write the equation number for node ContNode[elnum,Nnode] to
R the NMfile
ia END (* the Nnode loop *)

( FOR intpt = 1 TO ShapelntOrder DO (* each integration point *)
::;: position = GAUSSpt[ShapeIlntOrder,intpt] (* obtain the
‘ i: position of the integration point %)

:1a SHAPEfunctions(position,Nvalues, intpt) (* calculate the shape
nel function values at "position” and save in Nvalues
s indexed as [intpt,node_index] *)

9o Calculate the Jacobian at "position"

AN WGTdetJ| intpt] = GAUSSwgt[ShapelntOrder,intpt]*J (* calculate
W the integration weight Jacobian product at each integration
‘:f: point *)

f:; END (* the integration point loop *)

] FOR Nnode = a TO b DO (¥ for each nonzero shape function *)

( FOR Mnode = Nnode TO b DO (* for each unique combination of
-ﬁ=: shape function, i.e., N=M thus symmetry is considered *)
e integral = 0.0 (* initialize integration *)

f}:: FOR intpt = 1 TO ShapelntOrder DO (* each int. pt *)

. integral = integral + Nvalues[intpt,Nnode]*

‘N Nvalues[intpt,Mnode]*WGTdetJ[intpt]

f:» END (* the integration point loop *)

R Write the integral value to the NMfile
r:e END (* the Mnode, M shape function, loop ¥)

i_: END (* the Nnode, N shape function, loop *)

:{: END (* the element Joop *)

At END (* the GenerateShapeProductMatrix procedure *)
®
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s:j

::j: The six integration results are written to the NMfile in the order:

( a-a, a-c, a-b, c-c, c-b, and b-b, where the letters indicate the node

}\‘ index of each shape function in the product.

n:é With all of the component matrices for K calculated, the second

*ﬁj task of calculating an initial nonsymmetrical stiffness matrix can pro-

li) ceed. The third task of satisfying equilibrium and obtaining a symmetric

;ﬁ form can be combined with the matrix operations of the second task. The

:;2 details of integrating the two tasks are highly dependent on the method

1~ , used to obtain symmetry and equilibrium. For this research code, the

tasks are independent, so different methods can be investigated. This

?E: also allows the symmetry of the original stiffness matrix to be examined.

';3 The initial steps required in the calculation of K differ in the

J& two BE formulations. This difference results from the reversal of F and

!;; g—' in the traction-displacement relations, Equations (37) and (38). As

f?: a result of this difference the IBEM is burdened with n3 additional multi-

- plications and (n-1)n’ additions to obtain E. Additionally the DBEM has
4

reduced memory requirements. F can be read from disk one column at a

.,
L

ey

time. Fach column can immediately be used to calculate the correspond-
ing column of K.

As the order of the system of equations increases, the calculation
of the inverse in Equation (37) or (38) becomes the most costly step.

. . . 3
For Gauss elimination the cost increases as n°. A common approach (Ref

0]

Ay Ty B R,
*."*.Is,' = -:'-' L& .‘51

22 and 24) to reducing the cost of calculating the inverse is to sub-

divide the single BE region into several BE regions, providing many small

L

5: stiffness matrices instead of one large stiffness matrix. This subdivi-
3; sion introduces additional boundary elements, and thus more equations,
.j: but the equations corresponding to the complete BE domain are now block
{;f banded. Mitsui et al. (Ref 24) suggests that with regard to efficiency
?i: there i{s an optimal degree of subdivision. Subdividing the BE region

..: may also require that traction discontinuities and the violation of equi-
;;: librium be treated more rigorously since the occurrence of geometric

t;; discontinuities and a relatively small number of elements would be more
o likely.
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For both BE formulations, a column of E is immediately used to
calculate the corresponding column of K. The above algorithm calculates
C at the element level and writes the values to NMfile. An algorithm to
calculate an initial K, given the component matrices, is shown below.
Values of C are read from NMfile, consistent with the previous

algorithm. In this implementation the pseudo-code given below is a

separate program (a Modula-2 program module).
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MODULE StiffnessMatrix

BEGIN (* the StiffnessMatrix module ¥*)

ReadCmatrix(EqNum,C,numeltotal,order) (* read C: EqNum contains
the equation numbers for each node indexed as
[element_number,node_index] and C contains the integration of
the shape function products indexed as [element_number,0..5] ¥)

ReadGmatrix (% read g ¥*)

ReadFmatrix (* read F: For the Modula-2 implementation these two
procedures cause G and F to be read by modules envolved in the
calculation of E. This module does not have access to the data
of G and F. *)

(* Calculate the stiffness matrix, K ¥)
Initialize K to zero
FOR col = 1 TO order DO (* for each column of K ¥)
CalcEcol(col,Ecol) (* calculates a single column of E stored in
Ecol *)
FOR elnum = 1 TO numeltotal DO (* for each element *)
Ccount = 0 (* initialize the index for the C array *)
FOR nodel = a TO b DO (* node index for the first shape
function *)
roweq = EqNum[elnum,nodel] (*first row equation for nodel¥)
FOR node2 = nodel TO b DO (* for each new combination *)
coleq = EqNum[elnum,node2] (* first column equation for
node2 *)
Cval = C[{elnum,Ccount} (* extract the C term from the
element array ¥*)
FOR eqincrement = 0 TO 1 DO (* for each nodal dof *)
Crow = roweqteqincrement
Ccol = colegteqincrement
(* calc. contributions in both symmetrical terms %)
K[{Crow,col] = K{Crow,col] + Ecol{Ccol}*Cval
IF roweqgffcoleq THEN (* not a diagonal term *)
K[Ccol,col] = K[Ccol,col] + Ecol[Crow]*Cval
END
END (* the eqincrement loop *)
increment Ccount
END (* the node2 loop *)
END (* the nodel loop *)
END (* the elnum loop *)
END (* the col loop *)

Adjust K for equilibrium and symmetry
Write the upper triangular portion of K to disk
END (* the StiffnessMatrix module *)
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As previously noted, due to symmetry and the vector nature of the
elasticity problem each element C value (except diagonal terms) has four
positions in the assembled C. The "eqincrement loop'" above multiplies
each element C value by four terms (two for diagonal terms) in the column
of E and assembles the products into the corresponding four K terms. By
this approach the sparsity of C is exploited and the matrix is never
assembled.

The last task in calculating a stiffness matrix is adjusting K to
satisfy symmetry and equilibrium. The work of Tullberg and Bolteus
(Ref 20) provides guidance, based on numerical studies, for both of these
problems. As previously mentioned, numerical studies have shown the
nonsymmetrical K obtained by the direct approach to be more accurate
than the symmetrical form obtained by a variational approach. However
when combining the matrix with an existing FE system a symmetric form is
nsually preferable. An exception can occur if the FEM is used to model
plasticity governed by nonassociative flow rule; in this case the result-
ing FF system can be nonsymmetric. In this study the stiffness matrix
is symmetrized by averaging the off-diagonal terms.

In the initial implementation of the research code, equilibrium
considerations have not been included. Our principal interest is in
infinite domain problems where previously mentioned techniques are not
applicable. For finite domain problems, one of the methods implemented
by Tullberg and Bolteus (Ref 20) to solve the equilibrium problem might
be improved upon. The equilibrium error for a given direction was cor-
rected by adding the average error to each term. This approach did not
consider the relative magnitude of each term. A better approximation
might be obtained by basing the error distribution on the normalized
magnitude of each Lerm where the sum of absolute values of the stiffness

terms s the normalizing factor.
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SUMMARY AND CONCLUSIONS

tundamental differences in the formulations of the finite element
and boundary element methods result in corresponding strengths and
weaknesses. A combination of the methods using the strengths of each
may allow some classes of problems to be solved more effectively.
Applications with infinite or semi-infinite domains and fracture
mechanics problems are candidates for combined solution approaches.

The DBEM and IBEM are the most common integral equation methods in
use. They both have their origins in classical potential theory and the
fundamental singular solution is a key component of their derivations.
For both methods the approximations common to most formulations are:

(1) integrating in a piecewise manner, and (2) solving the integral
equnations in a collocation sense. The collocation approximation limits
the satisfaction of boundary conditions to discrete points; for coupled
solutions interface boundaries will be inherently incompatible.

Coupling approaches can be categorized based on several parameters.
The most basic classification indicates which numerical method hosts the
coupling (i.e., is the final form of the equations "BE like" or "FE
like"). This study addresses FE-hosted or stiffness couplings which can
be further categorized by the derivation of the stiffness matrix.

Either the stiffness matrix is obtained directly or via a variational

s
o,

statement of the problem. In both cases the key matrices are the fully

X

ropulated coefficient matrices generated by the BFEMs and a sparse matrix

LR

obtained by the integration of shape function products. The BEM

L LA

coefficient matrices are manipulated to establish a relationship between

v

the boundary tractions and displacements; this relation is then used

Ly

"
R

directly to obtain a stiffness matrix or substituted into a boundary

Ll

variational statement.

)
I )
¥

The two major problems with the BE stiffness matrix are its lack of
symmetry and violation of equilibrium. A variational formulation
inherently prodiuces a symmetric system which is equivalent to taking the

symietric component of the corresponding directly-formulated stiffness
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t:E: matrix. Investigators have offered several alternatives for dealing with
L A the equilibrium problem ranging from the introduction of Lagrange
) §§ multipliers which enforce equilibrium to ad hoc adjustments of the
; *Q stiffness matrix.
AHLY
::*3 In most cases, stiffness matrix calculations for both BE

) formulations follow the same main steps. However, the direct BEM is
.:;i better suited to coupled solution approaches because of its simpler

E;: traction-displacement relationship. For smaller problems the
‘:J: calculation of matrices comprising K require the most numerical effort.
a For larger problems the inverse calculation of a fully populated matrix
;%;? dominates the numerical effort. The only known method for reducing this
§§$ cost is to subdivide the homogeneous BE region into a number of smaller
;:: regions--trading the calculation of a large inverse for the calculation
o of several smaller ones.
,E&; The only matrix in the stiffness calculation not calculated by
1$t: standard BE programs is the shape function product matrix C. For
:;&: continuous BEs C is symmetric. Additionally the locally based nature of

[ the shape functions makes C very sparse. The calculation of C and its

_j:i multiplication are effectively performed at the element level.

5

Y RF.GOMMENDAT1ONS
i

isie There are several areas of investigation which could improve our
:Tt fundamental understanding of coupled solution techniques or improve

P their numerical effectiveness. There are also off-shoot areas from this
'xxf and previous investigations which are not within the scope of this

:Ei project. Additionally there are areas which must be investigated to

:i; attain our long term objective but could require significant

;f: implementation effort. These later areas are separately included below
Uiii but would require 6.2 leve) funding. For FY87, the following areas are
i&;g of interest:
y ::j;:

o numerical comparison of BEM, FEM, stiffness-BEM, and coupled

n .
@
[}

. solutions
i numerical study of incompatibility
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:*: -- between FEM and IBEM using the same shape functions
( -- inherent to che DBEM
A . theosretical basis and numerical techniques for dynamic problems
g . with infinite domains
! ? L theoretical basis and numerical techniques for semi-infinite
Loy domains.
0N
X
v The first two areas are the recommended core for the FY87
!:;: investigation. The later two are rather general and could be
5§:A investigated as time permits. Areas of investigation which either are

6.2 level efforts or require significant 6.2 support include:

{:' . numerical study of coupled solution behavior for static problems
}i L4 symmetry considerations in formulating the BE equations
;c . further investigation of element integrations
o -- special techniques for integrations over singularities
‘;" -- special techniques for the near boundary region
s -- order of integration calculation
nf: ¢ Galerkin formulation of BEMs
\:}: L4 development of a DBEM code to support 6.1 efforts
;?2 ® visco-elasticity.
) _:_._
Two topics which are "off-shoots” of this and previous investigations
o are:
:};' o adaptive mesh refinement based on boundary condition violation
) ® BE formulated crack-tip '"elements" in FE hosted couplings using
;?ﬁ the recursive integration technique.
ot
e We appear to have unique aspects in our approach to both of these
e
o problems.
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- Figure 1. Two-dimensional elastostatics problem using coupled
solution approach.
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. V(x) Explicitly defines the quantity as continuous as opposed to
o discrete.
o
U
k‘ v A rectangular or square matrix of functions (e.g., g(x)) or
constants (e.g., 5).
Ay
) \' A column vector.
'.H' .
o % A known value(s); for example, 0 is a vector of known nodal
:\- displacements.
N
I - -
A v An unknown value(s); for example, t is a vector of unknown
! nodal tractions.
- T _ T ,
- v Transpose of a matrix or vector. V' is a row vector.
-1 ,
b v Inverse of a matrix.
L4 Latin Symbols
>
;:~ Aik A constant tensor which provides a zero displacement
7}: for the fundamental singular solution at a reference
- distance r . A, = -8, C[C, In(r )-1].
2% o ik ik C11€y Inlry)-1]
° C Square, sparse matrix which contains boundary
= integrations of traction and displacement shape
a function products.
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Appendix A

LIST OF SYMBOLS

The most general form of a variable (i.e., with the least amount of
supplementary symbols) is defined. For example, u, represents a displace-
ment vector but depending on the notation it may be continuous or discrete,
known or unknown. There are some non-unique uses of Latin symbols. For
these cases supplementary symbols are included as necessary. Indicial
notation is only used for vector and tensor quantities. The indice range

in this case is two.

Mathematical Symbols
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L)
.L\:
b
o
N
N
N
c1, €2, C3, C4 Constants used in defining the fundamental solution.
Functions of the material constants.
. ek(g) A unit concentrated force used in the definition of
pd the fundamental solution.
S
¢
E Young's modulus.
E Square matrix relating nodal tractions to nodal
W displacements, t = E u
P ~
"r:.d . . ’ . 1] 1 . s
o Ei,k(g,g) Kernal function in Somigliana's 2 nd identity
AN ] relating boundary displacements to the stress field.
. £ Column vector of generalized nodal forces.
s
C: s . ] i
o Fij(§’§) Fundamental singular solution, Kelvin solution, for
:-::4 traction.
o
13 A matrix of element integrations involving the
7 traction fundamental solution. Both the direct and

indirect formulations consist of F matrices. The
A two F matrices differ due to the switch in roles of
the field and source point and the indices.

_ G..(x,8) Fundamental singular solution, Kelvin solution, for
P g ;
LY : displacement.
oA
o>,
:Q G A matrix of element integrations involving the
}i‘ displacement Kelvin solution. Due to the
. symmetries in the displacement Kelvin solution the
G matrices for the direct and indirect formulations
) are equivalent.
LN
b s W, (x,§8) Kernal function in Somigliana's 2'nd identity
b, ijk =2 , 5
':ﬁ) ) relating boundary tractions and body forces
> to the stress field.
o
:ﬁ; Mix) Traction shape functions used with nodal traction
-iy values to approximate a piecewise continuous traction
‘:,-..': distribution.
-.‘
Yoo N(x) Displacement shape functions used with nodal
_!, displacement values to approximate a continuous
N displacement distribution.
A
:n: n Nrder of the system of equations.
‘.i‘
s .
® r. Artificial boundary traction vector, analogous to

simple-layer source or source density of potential
A problems.
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oy,
L? r Distance from the field to the source point.

2
{ rC=y.y.
i 7

AN
n:l|
q& ti Actual boundary traction vector.
o
x§5 Ti.k(g.g) Fundamental singular solution, Kelvin solution, for
' ] stress.

»

a0 u, Displacement vector.

\-"\:

at X, Position vector to a point on the boundary or within
W the domain of the problem.
A , Vector from the source to the field point.
. Y p

N y., = x, - §..
™ i i i

}\ z, Position vector used in the integration of body
> forces.
S

- Greek Symbols

-\‘

JQ I Complete, finite boundary of the problem.

~

o

by
-:? 611 Kronecker delta svmbol.

—
™

Strain tensor.

)
—

YRy

N X A Lame's constant.
- u A Lame's constant, the shear modulus.
N
) v Poisson's ratio.
| ‘.':
o ¢, Position vector to & point on the boundary of
1 1
L the problem.
w0,
Y
N o, Stress tensor.
L J 1]
208
.ﬁ: Q Domain of the problem.
b7
o2 ¥, Vector of body forces.
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38 Ol pollution removal and recovery

39 Aur pollition

44 OCEAN ENGINEERING

45 Seafloor soils and foundations

46 Seafloor construction systems and operations (including
diver and manipulator tools)

47 Undersea structures and materials

48 Anchors and moorings

49 Undersea power systems, electromechanical cables,
and connectors

50 Pressure vesse! facilities

51 Physical environment {including site surveying}

52 Ocean-based concrete structures

54 Undersea cable dynamics
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